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ABSTRACT

Recently reported Doppler lidar observations of the downslope component of flow velocity made during the
occurrence of a mountain windstorm at Boulder, Colorado, have established that such storms are characterized
by an intense pulsation of windspeed with characteristic period(s) near 10 minutes. Scinocca and Peltier (1989)
have independently shown such pulsations to be predicted on the basis of two-dimensional nonhydrostatic
numerical simulations in which internal waves launched by stratified flow over smooth topography are forced
to exceed critical steepness and, therefore, “break.” In the present paper we analyze the physical mechanism
that supports this pulsation. As we demonstrate, it is due to Kelvin-Helmholtz instability of the new (quasi-
parallel) mean flow that is established in the lee of the obstacle by the wave, mean-flow interaction induced by

- wave breaking. As such the pulsation represents a secondary instability of the stratified flow in which the primary
instability is that associated with the initial transition into the high drag, severe downslope windstorm state.
This secondary instability also appears to play a role in determining the maximum intensity that the windstorm
may achieve and, therefore, is a crucial ingredient in the wave-turbulence interplay that constitutes the mountain
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windstorm phenomenon.

1. Introduction

The problem of the origin and nature of severe
downslope windstorms such as the chinook of North
America, the foehn of Switzerland, and the bora of
Yugoslavia has a long history of investigation that has
formed a prominent part of the meteorological litera-
ture for at least 50 years. One cannot hope to do justice
to the very fascinating early work in this area within
the confines of this brief introduction to the present
paper and so must be content to motivate what follows
by focusing attention upon a number of the most recent
developments, which it will be our intention to amplify
and to extend.

Because of the intensity of the debate concerning
the mechanism by which these windstorms are nucle-
ated (Peltier and Clark 1979, 1983; Clark and Peltier
1984; Smith 1985; Durran 1986; Bacmeister and Pier-
rehumbert 1988, Laprise and Peltier 1989a,b,c), it is
perhaps understandable that so little attention has been
devoted to the nature of the flow in the severe down-
slope windstorm state itself. In the present paper, we
shall address the issue of the origin of the quasi-periodic
time dependence in the strength of the downslope flow
that was revealed in the recently published set of very
high resolution numerical simulations of fully devel-
oped windstorm flows (Scinocca and Peltier 1989).
Although some hints of such time dependence had been

Corresponding author address: Professor W. R. Peltier, Dept. of
Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada.

© 1990 American Meteorological Society

previously revealed in the more restricted numerical
simulations of Clark and Farley (1984 ), the explana-
tion of such transience advanced by them was that it
was driven by an intrinsically three-dimensional insta-
bility of the shear aligned convective-type that had been
previously demonstrated to underly the turbulence
transition in Kelvin-Helmholtz waves (Peltier et al.
1978, Davis and Peltier 1979, Klaassen and Peltier
1985). The demonstration by Scinocca and Peltier that
the windstorm pulsation was also strongly evident in
two-dimensional breaking wave simulations very
clearly undermines the plausibility of this explanation
and it is, therefore, incumbent upon us to provide an
alternative. This is the main objective in the present
paper. The recent discovery by Neiman et al. (1988)
of the same O(10 min) quasi-periodic transience re-
vealed in the simulations of Scinocca and Peltier
(1989), in Doppler lidar observations of the wind field
during a downslope windstorm at Boulder, Colorado,
speaks directly to the relevance of this pulsation to the
understanding of detailed observational measurements.

The outline of the paper is as follows: in section 2
we shall begin by briefly reviewing and extending the
main results concerning the nature of the windstorm
transience that was observed to characterize the flow
in the lee of the topography for the three main simu-
lations described in the recently published analyses of
Scinocca and Peltier (1989). By spatially and tempo-
rally averaging both the horizontal velocity and buoy-
ancy fields in the region between the topographic max-
imum and the downstream propagating chinook front,
we are able to characterize the new mean flow that is



2854

established in the lee of the topographic maximum by
the wave, mean-flow interaction induced by wave
breaking. Even though the upstream profiles of wind
and stability for the three flows analyzed encompass
very significant differences, these new mean flows in
the lee are shown to exhibit very striking similarities.
Of utmost dynamical importance is the fact that the
vertical profile of the gradient Richardson number for
these new mean states inevitably reveals a sharp min-
imum either very near to or significantly less than the
critical value of 0.25 which, according to the Miles-
Howard theorem (Miles 1961; Howard 1961), is the
critical value for the onset of Kelvin~Helmholtz insta-
bility. The remainder of the paper will involve the de-
tailed demonstration of the, thereafter, obvious fact
that the transience in surface wind speed is entirely
explicable in terms of this instability. Section 3 presents
a brief description of the one-dimensional compressible
equivalent of the usual Taylor-Goldstein equation that
was used to perform explicit stability analyses on the
lee-averaged states obtained in the numerical simula-
tions along with the results of these analyses. Our main
conclusions are summarized in section 4.

2. Breaking wave induced mean flows and their su-
perimposed transients

In Scinocca and Peltier (1989) detailed nonlinear
numerical simulations of downslope windstorm oc-
currence were presented for three principal combina-
tions of topographic forcing and upstream profiles of
the horizontal component of velocity and the temper-
ature. In each simulation it was demonstrated that an
intense quasi-periodic transience in surface wind speed
developed to the lee of the topographic maximum and
in each case the nature of this transience was strikingly
similar qualitatively. Strong pulses of surface wind ap-
peared on the lee slope and propagated downstream
with very nearly constant phase speed until they en-
countered the more slowly propagating chinook front
in which they apparently dissipated. Figure 1 presents
Hoevmoeller diagrams for surface wind speed from the
three simulations discussed in Scinocca and Peltier as
a function of range downstream from the topographic
maximum. Plates (a), (b), and (c) of this figure are,
respectively, for upstream conditions corresponding to
the 11 January 1972 windstorm at Boulder, for slightly
modified upstream conditions which Scinocca and
Peltier (1989) demonstrated to deliver a nearly har-
monic downstream propagating pulsation, and for a
drastically different mean state characterized by up-
stream profiles of uniform wind and stability. These
different upstream profiles are shown explicitly in Fig.
3 below (solid lines).

On the basis of the Hoevmoeller diagrams in Fig. 1
and from associated time series and their power spectra,
we are able to determine the dominant periods, wave-
lengths and downstream phase speeds of the distur-
bances that obviously dominate the flow in the slot
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between the topographic maximum (at x = 0 in each
case) and the downstream propagating chinook front,
behind which the pulsations are inevitably confined.
These results are summarized for present purposes in
Table 1. In Table 1 (and in what follows) the three
flows are denoted by J11 (for the actual 11 January
1972 upstream conditions at Boulder, by MJ11 for the
case in which these upstream profiles were slightly
modified and for which the pulsation delivered by the
numerical integrations was almost perfectly harmonic,
and by CNU for the flow with upstream conditions of .
constant N and U (respectively Brunt-Viisila fre-
quency and horizontal velocity). :

The instantaneous two-dimensional structures of
wind (horizontal velocity #) and stability (squared
Brunt-Viisild frequency N?) are displayed in Fig. 2
at three different times in the course of the MJ11 sim-
ulation. Downstream of the topographic maximum,
note that the flow has been radically modified from its
upstream form. In particular the horizontal velocity
has been intensely accelerated in the lowest levels over
a height range that extends roughly from the surface
to the maximum elevation of the topography. Embed-
ded within this low-level jet are the very high velocity
heterogeneities (>80 m s™!) that correspond to the in-
dividual pulses seen previously in the Hoevmoeller
diagram for this flow (Fig. 1b). Above the low-level
jet, and extending to the level of wave breaking, the
horizontal velocity has suffered equally extreme de-
celeration from the values characteristic of the up-
stream profile. Also embedded within this deep layer
of strongly decelerated flow are heterogeneities of hor-
izontal velocity that are strongly correlated with the
velocity heterogeneities in the low-level jet. The sense
of this correlation is such that regions of anomalously
slow (even reversed ) flow are found to be located im-
mediately above the high velocity surface pulsations.

Inspection of the N? fields for the MJ11 flow (Fig.
2) demonstrates that the low-level jet is coincident with
a layer of dramatically enhanced static stability,
whereas the thick decelerated layer above has an equally
dramatic reduction of stability such that, in fact, N2
< 0 in isolated regions. Also, the heterogeneities of N?
evident in these regions are seen to be highly correlated
with the heterogeneities in . The sense of this corre-
lation is such that regions of static instability overlie
regions of reversed flow in the thick decelerated layer.
A similar analysis of the J11 and CNU simulations
reveals that these observations concerning the nature
of the heterogeneities in u and N? are equally charac-
teristic of these other flow configurations, a result that
clearly suggests a common dynamical origin.

Precisely what physical process these origins might
involve is further clarified through analysis of the new
mean fields of i and N? that are established in the lee
of the topography by wave, mean-flow interaction. To
this end we have constructed horizontal and temporal
averages of the horizontal velocity and potential tem-
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FiG. 1. Hovmoeller diagrams of surface wind speed as a function of range downstream of the topographic maximum for three of the
nonlinear simulations presented in Scinocca and Peltier (1989) (a) the 11 January 1972 Boulder windstorm (J11), (b) the modified 11
January 1972 Boulder windstorm (MJ11), and (c) the downslope windstorm initiated with upstream conditions of constant N and U

(CNU).

perature fields in the lee of the topographic maximum
but upstream of the chinook front for each experiment.
These averages are given by

(Tz - Tl) n (Sz - Sl)

S2

X i ¥x, z, t)dx]dz, (1)

Uz) = —— [ 1

where ¢ € {u, 0}. Table 2 provides detailed infor-
mation on the extents of the spatial and temporal av-
eraging performed to characterize the new mean flows
that are delivered for each of the three cases.

These new mean flows are explicitly presented in
Fig. 3, with the J11, MJ11, and CNU cases in plates

TABLE 1.
Period Phase speed Wavelength
Run (min) (ms™) (km)
MJ11 12 22.5 16
mn 13-17 18-43 —
CNU 5-20 7 3

a, b, and c, respectively. For each case we have com-
pared the lee-averaged profiles (dashed) with the up-
stream profiles (solid) of horizontal velocity, temper-
ature, squared Brunt-V4isild frequency, and gradient
Richardson number Ri(z) = N*(dii/dz)~2. The reader
will note by inspection of this Fig. 3 that the nature of
the modifications to both horizontal velocity (#) and
stability (N?) are qualitatively similar for each of the
three cases analyzed. In the lee-averaged horizontal ve-
locity field note the intense deceleration that has oc-
curred between the level of breaking and roughly the
maximum topographic elevation, while beneath this
latter height the flow has experienced equally dramatic
acceleration. The nature of the modifications to the
temperature profile from upstream to lee are similarly
consistent, with significant warming being character-
istic of the downstream profiles. The vertical variation
of this general warming beneath the breaking level is
such that low-level stability (N?) is strongly enhanced
whereas midlevel stability in the decelerated zone is
significantly reduced. The vertical profile of gradient
Richardson number based upon the lee-averaged mean
ficlds establishes very clearly the main point that we
will proceed to further elaborate below and which forms
the central result of the present paper. Because of the
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FG. 2. Total horizontal velocity (a~c) and squared Brunt-Viisild frequency (N?) (d-f) fields for the MJ11 case.
These are displayed at equivalent model times of (a, d) 198 min, (b, ¢) 275 min, and (c, {) 342 min.
TABLE 2. very large vertical shear of the horizontal velocity that
_ develops on the upper surface of the low-level jet, and
Spatial Temporal because of the diminished static stability characteristic
average range average range Number of ¢ the decelerated zone, the gradient Richardson num-
S-S, T, - T temporal fil h stic of h‘ 1 d d
Run (km) (min) samples Ny Der profiles characteristic of the lee-average states de-
velop a sharp minimum in each of the three cases. For
M1l 10.0-35.0 198-342 192 both the J11 and MJ11 cases this minimum is signif-
JCII\IJU 10.0-37.5 200-342 19 icantly less than the value of 0.25. For the CNU case

3.75-40.0 333-750 24

is very slightly greater than 0.25.
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FiG. 3. Upstream profiles (solid lines) and downstream lee-average profiles (dotted lines) of horizontal velocity,

temperature, and squared Brunt-Viisild frequency, and gradient Richardson number. These are displayed for (a) the

J11 case, (b) the MJ11 case, and (c) the CNU case.

These characteristics of the flow in the lee of the
topography immediately suggest a dynamical expla-
nation of the pulsations that were revealed by the Ho-
evmoeller diagrams in Fig. 1. The Miles—-Howard
theorem (Miles 1961; Howard 1961 ) demonstrates that
a stably stratified parallel flow is potentially unstable

if Ri < 0.25 for some z. Usually this instability is man-
ifest as a Kelvin-Helmholtz wave (e.g., Davis and Pel-
tier 1976, 1977), although significant distortions of this
structure may be introduced by the proximity of a
(lower) horizontal boundary (Peltier et al. 1978), es-
pecially at finite amplitude.
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It is clear, however, that the Miles-Howard theorem
cannot be directly invoked to account for the presence
of the pulses in the nonlinear simulations since the
temporally-averaged flow between the topographic
maximum and the downstream propagating chinook
front is not strictly parallel. In order to establish that
the pulses are a manifestation of a Kelvin-Helmholtz
instability, we must investigate the local stability of the
lee-averaged flows. The most straightforward way to
do this is to perform a 1D linear stability analysis of
the lee-averaged profiles presented in Fig. 3. Implicit

-in such analysis is of course the assumption that the
flows are parallel. If the wavelength, frequency, phase
speed, and growth rate of the fastest growing modes of
instability agree with the corresponding characteristics
of the pulses determined from the nonlinear simula-
tions, then a causal connection between the pulses and
K-H instability can be taken as established. It is this
strategy, that is employed in the analyses, that follows.

- A further discussion of the parallel nature of the flow

in the horizontal range over which the lee-average pro-
files were calculated for the purpose of the stability
analysis will be found in section 3d.

Before the stability analyses are conducted, one must
first determine, on physical grounds, whether a tem-
poral (real wave number &k, complex frequency w) or
spatial (real w, complex k) analysis is appropriate. From
the results of the fully nonlinear simulations one might
assume that a spatial stability analysis would be in order
since the pulses are seen to grow in intensity as they
propagate downstream of the topographic maximum.
The circumstances in which a true spatial instability
can be physically realized are somewhat subtle, how-
ever, and prior to performing the analysis it will be
worthwhile to consider them.

The basic formalism required to produce such as-
sessment has come from the analysis of plasma insta-
bilities and is due to Briggs (1964). The basic notion
in this theory is that instabilities may be divided into
two physical classes: “absolute” and “convective”
(Twiss 1951; Landau and Liftshitz 1953; and Sturrock
1958). An absolute instability is defined as one in which

growth in time occurs at every point in space due to

an initially localized instability. A convective instability
is defined as one that grows and propagates away from
its origin such that after finite time, at a fixed point in
space, the disturbance decays as a function of time
(Bers 1973). From such analyses it has been deter-
mined (Sturrock 1958) that spatially unstable flow
configurations are necessarily of the convectively un-
stable type. If a flow is absolutely unstable, however,
spatial instability can never be realized even though a
spatial stability analysis might yield growing modes. It
is the temporal stability analysis in such circumstances
that would deliver the physical modes of instability. It
can be critical, therefore, to assess whether a flow con-
figuration is absolutely or convectively unstable so that
a choice between a temporal and spatial analysis can
be made on appropriate a priori grounds.
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The flow configurations that of concern here, de-
scribed by the lee-averaged profiles of Fig. 3., are best

.described as stably stratified shear flows. The absolute

versus convective nature of instabilities arising from
such stratified parallel shear flows has recently been
investigated by Lin and Pierrehumbert (1987). In their
analysis, absolute and convective instability regimes
were determined as a function of the Richardson num-
ber at the point of maximum shear, Ri, and the velocity
ratio for the shear layer, C (Lin and Pierrehumbert
1987; Fig. 6). The velocity ratio C is defined by them
as C = (U+ + U-)/| U+ — U—|, where U+ (—) is the
asymptotic horizontal velocity above(below) the shear
layer. From the results of their analysis it was concluded
that for all values of Ri for which the flow was unstable
(i.e., 0 < Ri < %), it was convectively unstable only
for C > 0.76. From Fig. 3 the value of C may be de-
termined for each of our lee-averaged flows. In all three
cases (J11, MJ11, and CNU) it will be seen that U+
~ (. In such circumstance, C ~ 1 and one may con-
clude that the flow configurations defined by each of
the three lee-averaged mean states are convectively and
not absolutely unstable. Therefore, the modes derived
from a spatial instability analysis will be the ones that
are physically realized in such flows.

It is important to note that the analysis of Lin and
Pierrehumbert (1987) was performed for an idealized
tanhyperbolic shear flow in which the density stratifi-
cation had the same spatial scale as the shear. The direct
application of their results to the more complicated
shear flows investigated in this paper is not then strictly
valid. For the sake of completeness, therefore, we shall
present the results of a temporal stability analysis along
with those for the main spatial analysis in the next
section. This will also allow us to demonstrate the va-
lidity of an asymptotic result originally due to Gaster
(1962) that connects spatial and temporal modes when
growth rates are small.

3. Windstorm pulsations and parallel shear instability

Although the pulsation phenomenon revealed in our
nonlinear time-dependent simulations was a product
of anelastic dynamical processes, this being the as-
sumption upon which the numerical model was based,
here we have elected to analyze the stability of the mean
states in which the pulsation is embedded using a fully
compressible linear model. This linear model has been
previously exploited in a number of different dynamical
contexts (Davis and Peltier 1976; Ley and Peltier 1981,
Simard and Peltier 1982). Further modifications were
required in the present application. The governing
equations of this model are the usual conservation laws
for an inviscid, non heat conducting, ideal gas, namely,

du

= =_Vp+ 2
P ptpg (2a)
ar +poV-u=0 (2b)
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dp ~pdp

= - 2

da p d 0 (2¢)
p = pRT, (2d)

with d/ dt the advective derivative, v = C,/ C, the ratio
of specific heats and the remaining symbols having their
conventional meanings. Expanding each of the hydro-
dynamic fields p, p, T, was ¥(x, z, t) = Y(z) + ¥'(x,
z, t) in two spatial dimensions, with the y(z) repre-
senting the lee-averaged mean state of the downslope
storm, we proceed by substituting these expansions into
(2) and linearizing this system in the fluctuations ¥'(x,
z, t). When the resulting linear equations are Fourier-
transformed through application of the following
transform pair to each of the fluctuation quantities,

Wk, z, w) = f+w £+w e k)Y (x, 7, t) dxdt
(3a)
ll/,(xs z, t) !

+oo ptoo
_ (__2__1_)-2f f ei(ut—kx)‘Z’(k, z, w)dkde (3b)
o —0 J-oo

and when the resulting system is reduced in the usual
way to a single ordinary differential equation for the
spectrum of the vertical velocity fluctuation, the gov-
erning equation has the form:
2.~ ~
aw 44
dz dz
The coefficients in this equation, 4 and B, are rather
complicated functions of the temporal frequency w and
the wavenumber k, either of which may be complex,
as is the wavefunction w. Explicit expressions for A4
and B will be found in Eq. (17) of Ley and Peltier
(1981) and we shall not reproduce them here.
Equation (4) is the analogue of the Taylor—Goldstein
equation of conventional Boussinesq stability theory
and may be employed to perform a temporal stability
analysis by taking w complex and determining the cir-
cumstances of #(z) and N?(z), which allow exponen-
* tially growing (in time) eigensolutions to be constructed
for the appropriate boundary conditions. It may also
be employed to perform a spatial stability analysis by
taking k complex and following an identical procedure

+ BW=0. (4)

to construct spatially growing eigensolutions. For the -

present purpose, as in Davis and Peltier (1976), the
presence of the lower boundary (the ground) is im-
portant and the appropriate boundary condition on
this surface is the kinematic one of w (k, z = 0, w)
"= 0. The second boundary condition required to con-
struct solutions to the second-order o.d.e. (4) is a con-
dition of outgoing radiation in the limit z = o0 . As in
the previously cited references the eigenproblem posed
by (4) with these boundary conditions is solved using
a shooting scheme that employs a conventional o.d.e.
solver and Miiller’s method (Miiller 1956) to accelerate
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convergence to an eigenvalue. For example, in the case
of spatial stability we fix kz (the real part of k) and
compute w(k;, z = 0, wg) by shooting downward from
a sufficiently large z so that we may apply the radiation
condition analytically. An eigenvalue (k;, wg) for fixed
kg is found when Wi (k;, z = 0, wg) = Wy (k;, z = 0,
wR) = (.

A useful diagnostic, insofar as physical understand-
ing of the eigensolutions constructed in this way is
concerned, follows from a perturbation energy equation
that may be derived from the linearized system that
follows from (2). This may be written as

oE'

D _OF’
S+ e gw’e'% =~ =+ V(pu), (5)
in which
E=2luwr w22 (6)
’ 2 p2C?

is the sum of the kinetic and elastic energies for the
(generally compressible ) perturbation. Defining x-av-
eraging and height integral operators as (for the case
of temporal instability)

¥x, 2) = % f " U, 2)dx (72)

H -
(W(x,2)) = fo #(x, z)dz, (7b)

and operating on (5) with (7), delivers
0 — JEpp—— P ——
- = Lu'w'y + =wie'). 8
6Z<E> (piu'w"y <g0w > (8)

Equation (8) demonstrates that the temporal growth
of perturbation energy is associated with the extraction
of kinetic energy from the mean flow through the action
of the Reynolds stress u'w’ or the extraction of potential
energy from the mean flow through the action of the
perturbation heat flux w'@’. If the former interaction
is dominant the instability is dynamic, whereas if the
latter is dominant the instability is static. The utility
of (8) is that it can be employed as an a posteriori
check on the solutions to the eigenproblem posed by
(4). In the case of the temporal instability problem,
the perturbation variables have the form:

V(x, z, 1) = Yz)eerellon — k),

9)

In (8) we then have

XE) _ —2w(E",

a

and we can compute the growth rate of the instability
S = —wras

1

s | + (s

S =

SN

W>] (10)
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a. The linear stability of the'MJ11 lee profiles

Because the MJ11 case delivers the most intense and
regular pulsations, our test of the parallel shear hy-
pothesis will begin by focusing upon this case. The spa-
tial and temporal characteristics of the observed pul-
sation (as summarized in Table 1) include a horizontal
wavenumber kg ~ 3.9 X 10 m ™! (A, = 2n/kgp ~ 16
km), a temporal frequency wg ~ 8.4 X 1073 s~ (T
= 27 /wg = 12 minutes), and a horizontal phase speed
C,~22.5ms™". Tobegin, consider the spatial stability
of the MJ11 lee mean state. Inspection of the time
series and their power spectra for surface wind, as a
function of downstream location, that were presented
in Scinocca and Peltier (1989; Fig. 19) clearly dem-
onstrate that the pulsation grows in amplitude with
increasing downstream distance. This analysis can be
quantified to obtain a value for the imaginary part of

VELOCITY ms!
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the horizontal wavenumber k;. To this end Fig. 4 pre-
sents a sequence of five such time series and associated
power spectra. The power spectra are based upon the
high pass-filtered time series denoted by the dotted
lines. Inspection of the power spectra demonstrates that
in the range from 12-24 km the 12 minute periodic
transient amplifies. Since the amplitude of a spatial
instability 4 oc e“* and since power P oc A2 we can
estimate k; from In(V P/ Py) = In(A4/Ay) = k;x. In Fig.
5 we have plotted In (4/A4y) as a function of down-
stream position in the range 8.5-36.0 km. A least
squares best fit to the data in the range 8.5-16.0 km

" yields the estimate k; ~ 1.97 X 10™* m ™. Inspection

of Fig. 5 shows that the exponential growth of the 12
min pulsation persists over only about the first third
of the spatial interval for which numerical data are
shown. Beyond this range the amplitude appears to
saturate. This is consistent with the notion that non-

POWER
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F1G. 4. Time series and associated power spectra of surface wind displayed over the range 12-36 km downstream of the
topographic maximum for the last 144 min of model time in the MJ11 nonlinear simulation. Filtered time series (dotted)
are displayed as deviations from the mean of the raw time series.
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linear effects must eventually arrest the simple expo-
nential growth predicted by linear theory. This view is
also consistent with the fact, evident on Fig. 5, that the
power spectra markedly broaden as a function of in-
creasing downstream range until by 36.0 km the spec-
trum is no longer dominated by the strong 12 min
component that appears initially on the lee slope of
the mountain.

In preparation for the linear stability analysis that
will be employed to test the modal structures supported
by the MJ 11 lee-averaged profiles, we note that critical
levels in the background profiles play an important
dynamical role in determining such structures. In-
spection of the appropriate profiles for the MJ11 case
(Fig. 3b) shows that the phase speed of the observed
wave, C, = 22.5 m s™', equals the mean flow speed at
two levels, one near 4.5 km and one near 13 km. In
order to avoid any complications that might be asso-
ciated with improper treatment of the uppermost of
these critical levels (even though only the lower is
within the region in which Ri < 0.25), we have capped
the MJ11 profiles with constant N and # conditions
above a height of 15.5 km at which the wind speed is
30 m s~'. These profiles are denoted by the solid lines
on Fig. 6. This also helps to obviate an additional com-
plication that arises in the linear model when kg > k;
(or wg > w, for temporal instability) and the phase
speed equals the wind speed at the level above which
constant N and # conditions are assumed for ease of
applying the upper radiation boundary condition.

The main results of the stability analyses of these
profiles are shown on Fig. 7. Detailed reconnaisance
of the parameter space (kg, k;, wg) revealed only a
single mode of instability. This is represented in Fig.
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component of surface wind displayed in Fig. 6.
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7a (solid lines) by plots of the variation of the phase
speed C , and the imaginary part of the wavenumber
k; as functions of the real part of the wavenumber kg.
For this mode we note that the most rapid spatial
growth obtains with kg = 3.79 X 10™* m™' and wg
=7.86 X 107357 or C, = 20.7 m s™'. This is obviously
a very close quantitative agreement with the previously
cited parameters from the numerical simulation (3.9
X10™#m™,84 X 1073s™! and 22.5 m s™!, respec-
tively). This comparison is listed in Table 3 for con-
venience.

Results obtained from a temporal stability analysis
of the same lee-averaged profiles for this MJ11 case
are superimposed upon those for the spatial stability
analysis in Fig. 7 (dotted lines). It will be noted that
the results from the temporal stability analysis are al-
most identical with those of the spatial stability analysis.
They are also summarized on Table 3. Although it
might appear remarkable that the modes of temporal
and spatial instability should be so intimately linked,
this is entirely expected in circumstances that were first
analyzed by Gaster (1962). Essentially, he demon-
strated that, given small growth rates in both the tem-
poral [w;(T")] and spatial [ K;(S)] analyses, w;( T) and
K;(S) were simply related to the group velocity of the
disturbance by

w(T) dwg

ki (S) kg’ (1
We have tested (11) for k;(.S) and w;( T) for the fastest
growing mode of instability and at all K for which
modes of instability of the MJ11 lee profiles exist and
found it to be valid to the 1% level. That the spatial
and temporal modes of instability in this flow are es-
sentially identical is further confirmed by the eigen-
functions for vertical velocity shown in Fig. 9b (the S
and T structures overlap).

Although it is certainly encouraging that the results
of the linear stability analysis of the MJ11 lee profiles
is in such close agreement with the parameters ki and
wg that are characteristic of the pulsation present in
this storm, this agreement is less than fully satisfactory
because of the implications of the observed rate of spa-
tial growth. The dominant mode is predicted to un-
dergo amplification by a factor of e in kzx(S)/k;(S)
=~ 248 horizontal wavelengths or wz(T)/w(T) ~ 243
temporal periods. This is approximately two orders of
magnitude slower growth than was found to be char-
acteristic of the numerically simulated pulsation (see
preceding discussion in connection with Fig. 5).

This final difficulty is in fact rather simply explicable
as a consequence of the influence that the instability
has on the mean flow that supports it. It is a well doc-

.umented fact that Kelvin~Helmholtz-like instabilities,

feedback negatively upon the mean flow out of which
they arise in the sense that the vertical shear of hori-
zontal velocity is sharply diminished by the Kelvin—
Helmholtz wave, mean-flow interaction (e.g., Peltier
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FIG. 6. Lee-averaged profiles capped by constant wind and temperature for the MJ11 case
(solid) and the MJ 11 case with enhanced velocity shear (dotted ) that were employed in the spatial

and temporal instability analysis.

et al. 1978; Klaassen and Peltier 1985). To demonstrate
that this straightforward explanation of the inadequate
growth rate delivered by the initial linear analysis is a
viable one, a simple experiment was performed in
which the vertical shear of the MJ 11 lee-averaged pro-
file was simply enhanced in the vicinity of the maxi-
mum in the manner suggested by the above-cited non-
linear life cycle analyses of isolated K-H waves. This
modification of the background velocity profile is
shown as the dotted line on previously discussed Fig.
6, where it is seen to consist of a smooth deceleration
of the flow above the critical level at 4.5 km elevation
and a smooth acceleration below. The N? profile is
untouched in this experiment and the net effect upon
the Richardson number profile is also shown by the
dotted curve. )

The results of the linear stability analysis of this
(shear enhanced) lee-averaged parallel flow are pre-
sented on Fig. 8, in which the solid curves show the
results for the spatial and the dashed curves for the
temporal analyses. Table 3 again provides a summary
of results. Both ki and wg and thus'C, = wg/ kg remain
in very good agreement with the values of these wave
parameters extracted from the simulations. It will be
observed on Fig. 8, however, that the spatial and tem-
poral growth rates in the shear enhanced MJ11 flow
are nearly two orders of magnitude greater than those

delivered by the original profiles. In the shear enhanced

_case the e-folding distance of the fastest growing mode
of spatial instability is now only 3.7 wavelengths, which
is within a factor of 2 of the value extracted from the

numerical data shown in Fig. 5. A further minute ad-
justment of the shear could clearly make this fit exact
but this would serve no purpose as the required sen-
sitivity has been established. It will also be noted in
connection with Fig. 8 that there are now noticeable
differences between the results for the spatial and tem-
poral stability analyses. Figure 8b, for example, which
shows normalized eigenfunctions |w| for the fastest
growing S (solid line) and T'(dotted line) modes, dem-
onstrates significant differences in these two structures.
These spatial and temporal inconsistencies are a con-
sequence of the breakdown of the Gaster (1962) result
expressed in Eq. (11), a result that is valid only in the
weak instability limit. With the enhanced shear the
growth rate of the fluctuations is high and the asymp-
totic result of Gaster no longer obtains.

Figure 9 provides a contoured presentation of the
perturbation horizontal velocity field for the fastest
growing mode of temporal instability for the MJ11 lee
mean state with enhanced wind shear (Fig. 6, dotted
lines). Evident by inspection of Fig. 9 is that there are
three different elevations at which maximum deviations
from the background wind field obtain; the most in-.
tense of which is confined to a height range within +1
km of the critical level at z = 4.5 km. The secondary
maximum in the horizontal velocity field occurs at the
ground (z = 0) and, consistent with the structure of
the pulsations produced by the numerical simulations
(Fig. 3), extend over a depth range of 2 km. Above
the critical level a tertiary maximum occurs near a
height of 6.5 km.
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growth rates (k;; w;) as a function of real wavenumber (kg). In plate (b) normalized eigenfunction
of the fastest growing mode of instability is represented as the magnitude |w| of the vertical

velocity perturbation for both the spatial and temporal calculations.

of this analysis, presented in Fig. 9b, demonstrate that

mode of parallel shear instability has been performed for every unit of energy gained by the perturbation,

using the decomposition given in Eq. (10). The results

TABLE 3. MJLA Analysis.

1.57 units are extracted from the kinetic energy of the

Mil1 Unmodified MJLA profiles Modified MJLA profiles
Wave nonlinear

parameters simulation Spatial Temporal Spatial Temporal
kg (m™) 3.9x107* 3.79 X 107* 3.79 X 107¢ 3.78 X 107™* 3.94 X 1074
wg (57Y) 8.4 x 1073 7.86 X 1073 7.86 X 1073 9.18 X 1073 9.56 X 1073
k; (m™1) 1.97 X 107* 1.53 X 1076 — 1.04 X 107* —

w (s — — -323x107% — -2.35%x 1073
C,(ms™) 22,5 20.7 20.7 24.3 24.3
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FIG. 8. As in Fig. 7 except that the MJ11 lee-averaged profiles with enhanced wind shear
(dotted lines Fig. 6) were employed for the spatial and temporal instability analyses.

basic state while 0.57 units are transformed into po-
tential energy. This clearly shows that the mode is a
dynamical instability of the parallel-shear-type rather
than a static convective instability. The normalized
Reynolds stress profile for the perturbation is also dis-
played in Fig. 10b. According to Eq. (10), a consistency
check was performed on the growth rate delivered by
the conventional normal mode instability analysis and
that delivered diagnostically from the energy density
and energy conversion terms. Whereas the eigenanaly-
sis gave s = —w; = 2.3 X 1072 57! for the fastest growing
mode, the diagnostic relation (10) gave s = 2.1 X 1073
s~! for an error of less than 10%.

Taken together, it is suggested that these results con-
stitute convincing evidence that the harmonic pulsation
delivered by the nonlinear time dependent MJ11
windstorm simulations of Scinocca and Peltier (1989)

were caused by excitation of a simple spatial mode of
Kelvin—-Helmholtz instability of the new mean state
induced by the wave, mean-flow interaction caused by
wave breaking. However, the MJ11 simulation was
rather special in that the pulsation characteristic of it
was almost perfectly harmonic. One should, therefore,
be interested to know whether similar linear analyses
of the J11 and CNU lee-averaged states might provide
any explanation for the more variable properties of the
pulsations observed in the J11 simulation and for the
marked change in horizontal scale of that in the CNU
case. These analyses are presented in the following two
subsections.

b. The linear stability of the J11 lee profiles

The horizontal velocity pulsations obtained in this
simulation were characterized ( Table 1) by a range of
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temporal mode of instability.

temporal frequencies 6.2 X 103 s ' < wp < 8.1 X 1073
s~! and a range of phase speeds 18 m s™! < C,;, < 43
m s~!. The wide range of phase speeds is strikingly
evident from the Hoevmoeller diagram for this flow
shown as Fig. la. Following the procedure described
in the last subsection, we subjected the profiles char-
acteristic of the lee mean state for this model storm
(Fig. 3a, dashed lines) to a normal mode stability anal-
ysis. In this case the direct stability analysis of the nu-
merically derived mean states (solid curves) was shown
to deliver no unstable mode for the range of physical
parameters that defines this problem. As in the previous
example, in which an unstable mode was found to have
growth rate at least two orders of magnitude lower than
required, we expect the problem to be associated with
the fact that the pulsations reduce the vertical shear of
horizontal velocity in the mean state from which they
derive their energy.

We are therefore led to test the hypothesis by mod-
ifying the background profile of horizontal velocity in
a manner similar to the modification performed on the
lee average MJ11 background described in the previous
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section. Table 4 presents the numerical characteristics
of the fastest growing modes of spatial and temporal
instability determined from the linear stability analysis
of these modified profiles along with the corresponding
characteristics determined from the nonlinear simu-
lation. It was found that again the spatial and temporal
instability analyses predict almost identical wavelength
and frequency for the fastest growing mode of insta-
bility. For the spatial instability the modal amplitude
e-folds every |kgr(S)/ki/(S)| = 4.4 horizontal wave-
lengths while for temporal instability it e-folds every
lwr(T)/w;(T)| = 5 temporal periods.

As in the previous section a diagnostic energy anal-
ysis of the fastest growing mode for this shear enhanced
flow was performed. Again the results were character-
istic of the same sort of Kelvin—-Helmholtz-like insta-
bility revealed on the preceding example. The consis-
tency check on the eigenanalysis embodied in Eq. (10)
again demonstrated that the results of the energy anal-
ysis were (to about 10% accuracy) in accord with the
results from the eigenanalysis.

Of course the analysis presented here of the J11 lee-
averaged profiles provides no explanation for the wide
variability in the phase speed of the individual pulses
observed in the corresponding nonlinear simulation,;
although the theoretically predicted phase speed of the -
fastest growing mode is well within the observed range.
Note, however, that lee-averaged profiles were com-
puted by averaging the fields in the lee of the topog-
raphy in both space (horizontally) and in time. One
must expect that the effective mean flow ““seen” by any
individual pulse might depart significantly from the
long-term temporal average. Viewed from this per-
spective, the nearly harmonic pulsation that was char-
acteristic of the previously described example must be
seen as a rather exceptional case. Indeed, analyses dis-
cussed in Scinocca and Peltier (1989) demonstrated
how susceptible the regular pulsation of the MJ11 case
was to a number of rather minor modifications to the
properties of the upstream profiles and topographic
forcing. ‘

c. The linear stability of the CNU lee profiles

In concluding the investigation of the parallel shear
hypothesis of the origin of severe downslope windstorm

TABLE 4.

Modified J11 profiles

Wave J11 nonlinear
parameters simulation Spatial Temporal
kg (m™") — 3.80 X 107* 3.76 X 1074
wg (s7h (6.2-8.1) X 1073 9.55 X 1073 9.43 X 1073
k;(m™") — 8.64 X 1073 —
wr (s — — —1.87 X 1073
C,(ms™) 18-43 25.1 25.1
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pulsations, we will briefly focus upon the radically dif-
ferent case presented by the simulation of the phenom-
enon in a mean flow characterized by upstream profiles
of constant Brunt-Vdiisidld frequency and horizontal
velocity. In this case (as summarized in Table 1) all
of the pulses of strong surface wind were observed to
propagate downstream with the same phase speed C,
~ 7 m s~'. The most intense pulses were also char-
acterized by a horizontal wavelength A\, =~ 3 km and
a period in the range of 5-20 min.

As in the previous example, when these profiles were
subjected to a linear stability analysis no modes of in-
stability were found at all. This was expected by virtue
of the fact that the gradient Richardson number is no-
where less than 0.25 (solid curve). Therefore, as in the
previous examples the hypothesis that shear in the
mean state from which the pulsations actually derive
their energy had been sharply reduced by their growth
was tested.

To this end, the background velocity profile was
again modified by enhancing the shear on the interface
_ between the low-level jet and the upper-level deceler-
ated zone to obtain the new horizontal velocity profile.
The results obtained from the spatial and temporal sta-
bility analyses of these modified profiles are listed in
Table 5. The fastest growing spatial and temporal
modes again have almost identical properties. In par-
allel with the previously discussed examples, a sum-
mary of modal energetics for the fastest growing (tem-
poral) mode again established that the fastest growing
disturbance was a (ground modified ) parallel shear in-
stability. Application of Eq. (10) demonstrated con-
sistency in the eigenvalue and energetics analyses at
the 6% level.

d. The onset of secondary spatial instability

The linear instability analyses presented in the pre-
vious three subsections have provided substantial ev-
idence that the intense pulses of surface wind observed
in the three main nonlinear numerical simulations of
Scinocca and Peltier ( 1989) were the result of a surface
modified parallel shear mode of spatial instability. In
order to demonstrate this result, the instability analyses
were restricted to the region of the flow in the lee of
the topography where it was most nearly parallel and
the pulses of surface wind most regular. Consequently,

TABLE 5.

Modified CLA proﬁles

Wave CNU nonlinear
parameters simulation Spatial Temporal
kg (m™) 2.09 X 1073 2,13 X 1073 2.20 X 1073
wr(s™") 5.24 X 1073-2.09 X 1072 1.61 X 1072 1.65 X 1072
k& (m™) — 3.10 X 1074 —
wy (71 — —_ -1.92x 1073
C, (m s 7.0 7.56 7.52
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the additional interesting point as to the spatial location
at which this secondary instability is first initiated has
yet to be considered. In this subsection, therefore, the
nature of the initial evolution of the spatial instability
that is ultimately responsible for the strong pulses of
surface wind in the more complex region of the flow
directly above the topography is investigated.

In the analysis and discussion of the MJ11 nonlinear
simulation presented in Scinocca and Peltier (1989) it
was observed that each of the strong pulses of surface
wind had originally evolved from a weak disturbance
in the flow located slightly upstream of the topographic
maximum on the leading edge of the breaking region.
In Fig. 10, the horizontal velocity field is presented for
the MJ11 case at 3 min intervals for model times of
200-215 min. This sequence is identical to that pre-
viously presented-in Scinocca and Peltier (1989; Fig.
18) except that here the fields are displayed using an
undistorted vertical to horizontal aspect ratio of 1:1.
From this perspective, it will be observed that the flow
in the downstream range 10-35 km (interval P, Fig.
10) is approximately parallel. This interval corresponds
to the region in the flow in which the strong regular
pulses of surface wind were observed in the Hoev-
moeller diagram (Fig. 1b) and over which spatial av-
erages were calculated (Table 2) for the instability
analysis of the MJ11 case described above. In the in-
terval labeled Q-P on Fig. 10, the early evolution of
the instability responsible for the strong pulses of sur-
face wind is observed to occur. Modes of instability in
this region of the model domain sense a background
flow and lower surface that slowly vary in the down-
stream direction.

Even though the background flow appears more
complex in the range over which the spatial instability
initially onsets (Q-P), it may be demonstrated that the
flow conditions in this region of the model domain are
sufficient to support the same type of parallel shear
flow instability that was found to be characteristic of
the flow in the interval P. In Fig. 11 temporally-aver-
aged vertical profiles of u, 8, N? and Ri are displayed
in the range extending from 10 km upstream to 10 km
downstream of the topographic maximum at intervals
of 2.5 km. The temporal averages were performed over
a time span equivalent to that previously employed in
the instability analysis of the MJ11 case and docu-
mented in Table 2. The far upstream profiles imposed
on the flow (heavy lines) have been included for ref- .
erence. It is immediately apparent from Fig. 11 that
the temporally-averaged background flow in the high
drag regime is a slowly varying function of horizontal
position in the interval Q-P. Because of this slow vari-
ation, it would seem a reasonable approximation to .
consider the background flow in this range to be locally
parallel.

Under this quasi-parallel approximation, one may
consider the dynamical stability of the temporally-av-
eraged background profiles as a function of horizontal
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the flow where the spatial instability responsible for the strong pulses of surface wind initially onsets.

range in the interval Q-P. In Fig. 11 it is revealed that
the necessary condition for dynamic instability Ri < Y
is first satisfied within the interval Q-P between 7.5
and 5.0 km upstream of the topographic maximum at
an elevation near 9 km. It is at this location in the flow
where the onset of the instability that ultimately pro-
duces the strong pulses of surface wind was first ob-
served in Fig. 10. As one looks to positions further
displaced in the downstream direction, it will be seen
that this criterion is always satisfied by the background
flow in the interval Q-P. Fig. 11 also reveals, however,
that the elevation and depth through which Ri < Y is
achieved by the background flow is a function of
downstream position. As a result, the parameters that
characterize the fastest growing mode of instability will
in general vary slowly as a function of downstream
position in the range Q-P. This would indicate that no

one mode of spatial instability could dominate the
spectrum in this range. This is consistent with the ob-
servation from the MJ11 nonlinear simulation that the
disturbances responsible for the strong pulses. of surface
wind seem to grow quite quickly as they pass from the
region Q-P (where there is an evolution of the fastest
growing mode of spatial instability) into the range P
(where the parallel nature of the flow allows the selec-
tion of one mode, which thereafter dominates the
spectrum).

While this analysis has helped in understanding the
evolution of the instability in this more complicated
region of the flow, it must be made clear that the spatial
instability mechanism cannot account for the initial
onset of the disturbances far above the topographic
maximum. Such a mechanism can only selectively
amplify modes from preexisting disturbances (or white
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noise ) already present in the flow. The elevation above 4. Conclusions

the topographic maximum where these initial distur-

bances are observed however is known to be the most The analyses presented in section 3 provide com-
turbulent region of such downslope windstorm flows pelling evidence that the intense pulsation in windspeed
(e.g., Lilly 1978). that was shown to be characteristic of the mature
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downslope windstorms delivered by two-dimensional
numerical simulations of breaking, topographically
forced internal waves. This is caused by Kelvin—Helm-
holtz instability on the shear interface between the low-
level jet and the upper-level decelerated layer, which
are induced by the wave, mean-flow interaction asso-
ciated with wave breaking.

This secondary instability plays a very important
role in the evolution of the mature windstorm. For
example, in each of the simulations presented in Scin-
occa and Peltier (1989) it was observed that the chi-
nook front propagated with nearly uniform speed in
the downstream direction. The K—-H instability is most
probably responsible for this phenomenon. As these
disturbances propagate downstream they transport x-
momentum in the x-direction (via pou'u’, where the
average is now in time). The divergence of pu'u’ across
the chinook front then induces the deposition of hor-
izontal momentum at this location and causes the re-
gion of modified flow to extend further downstream.

This paper has focused exclusively upon the con-
nection between the secondary K-H instability and
the quasi-periodic fluctuations in surface wind observed
during actual events. The action of this instability,
however, could have far reaching implications for our
understanding of the transition into the severe down-
slope windstorm configuration itself. The stability
analyses presented here also suggest that, in the “high
drag regime,” it is the Kelvin~-Helmholtz instability
that regulates the strength of the storm. Since this in-
stability mixes downslope momentum in the vertical
direction, thus decelerating the low-level flow and ac-
celerating the fluid in the overlying mixed layer, it pro-
vides a negative feedback mechanism by which a bal-
anced “high drag state” can be achieved.

While this conclusion seems physically reasonable,
it must be clearly understood that it is based solely on
the observed evolution of the K-H mode during the
mature state of the windstorm when the drag curve
has “saturated.” In all of the nonlinear simulations
presented in Scinocca and Peltier (1989), it was found
that the pulses were observed to form during the earliest
phases of the evolution of the windstorm in the elevated
breaking region, soon after the primary wave field goes
unstable above the topography. The 2D linear stability
of the primary wave field has recently been investigated
by Laprise and Peltier (1989a,b,c). They showed that
the flow becomes unstable to a deep mode of dynamic
instability as streamlines overturn. It was this mode of
instability that they postulated to be responsible for the
evolution of the flow away from the steady state so-
lution predicted by Long (1953) and into the high drag
state characteristic of downslope windstorms. Since the
K-H instability analyzed here is also a dynamic insta-
bility, it would seem possible that it is simply the time-
evolved form of the deep mode of instability docu-
mented by Laprise and Peltier (1989a). In the future,
it is intended to make this the subject of further study
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in order to further clarify the nature of the instability
that appears to underlie the initial transition into the
high drag regime.

Acknowledgments. The computations described in
this paper were performed on the CRAY X-MP 2/4
supercomputer of the Ontario Center for Large Scale
Computation at the University of Toronto. Research
Support was from NSERC Grant A9627.

REFERENCES

Bacmeister, J. T., and R. T. Pierrehumbert, 1988: On high-drag states
of nonlinear stratified flow over an obstacle. J. Atmos. Sci., 45,
63-80.

Bers, A., 1973: Theory of absolute and convective instabilities. In-
ternational Congress on Waves and Instabilities in Plasmas,
Innsbruck, Austria, B1-B52.

Briggs, R. J., 1964: Electron-Stream Interactions in Plasmas. MIT
Press.

Clark, T. L., and W. R. Peltier, 1977: On the evolution and stability
of finite-amplitude mountain waves. J. Atmos. Sci., 34, 1715~
1730.

——, and R, D. Farley, 1984: Severe downslope windstorm calcu-
lations in two and three spatial dimensions using anelastic in-
teractive grid nesting: a possible mechanism for gustiness. J.
Atmos. Sci., 41, 329-350.

—,and W. R. Peltier, 1984: Critical level reflection and the resonant
growth of nonlinear mountain waves. J. Atmos. Sci., 41, 3122-
3134,

Davis, P. A., and W. R. Peltier, 1976: Resonant parallel shear insta-
bility in the stably stratified planetary boundary layer. J. Atmos.
Sci., 33, 1289-1300.

——, and , 1977: Effects of dissipation on parallel shear insta-

bility near the ground. J. Atmos. Sci., 34, 1868-1884.

, and , 1979: Some characteristics of the Kelvin-Helmholtz

and resonant overreflection modes of shear flow instability and

of their interaction through vortex pairing. J. Atmos. Sci., 36,

2394-2412.

Durran, D. R., 1986: Another look at downslope windstorms. Part
I: The development of analogs to supercritical flow in an infinitely
deep, continuously stratified fluid. J. Atmos. Sci., 43, 2527~
2543,

Gaster, M., 1962: A note on the relation between temporally-increas-
ing and spatially-increasing disturbances in hydrodynamic sta-
bility. J. Fluid Mech., 14, 222-224,

Howard, L. N., 1961: Note on a paper of John W. Miles. J. Fluid
Mech., 10, 509-512.

Klaassen, G. P., and W. R. Peltier, 1985: The onset of turbulence in
finite-amplitude Kelvin-Helmholtz billows. J. Fluid Mech., 155,
1-35.

Landau, L. D., and L. M. Lifshitz, 1953: Electrodynamics of contin-
uous media. (in Russian) G.I.T.T.L.

Laprise, R. J., and W. R. Peltier, 1989a: The linear stability of non-
linear mountain waves: implications for the understanding of
severe downslope windstorms. J. Atmos. Sci., 46, 545-564.

—, and , 1989b: The structure and energetics of transient
eddys in a numerical simulation of breaking mountain waves.
J. Atmos. Sci., 46, 565-585.

, and , 1989c: On the structural characteristics of steady
finite-amplitude mountain waves over bell shaped topography.
J. Atmos. Sci., 46, 586-595.

Ley, B. E., and W. R. Peltier, 1981: Propagating mesoscale cloud
bands. J. Atmos. Sci., 38, 1206-1219.




2870

Lilly, D. K., 1978: A severe downslope windstorm and aircraft tur-
bulence induced by a mountain wave. J. Atmos. Sci., 35, 59-
77.

——,and J. B. Zipser, 1972: The front range windstorm of 11 January
1972—a meteorological narrative. Weatherwise, 25, 56-63.

Lin, S. J., and R. T. Pierrehumbert, 1987: Absolute and convective
instability of inviscid stratified shear flows. Proc. Third Inter-
national Symposium on Stratified Flows, Pasadena.

Long, R. R, 1953: Some aspects of the flow of stratified fluids, a
theoretical investigation. Tellus, V, 42-58.

Miles, J. W., 1961: On the stability of heterogeneous shear flows. J.
Fluid Mech., 10, 496-508.

Muller, D. E., 1956: A method for solving algebraic equations using
an automatic computer. Mathematical Tables and Aids to
Computation, 10, 208-215.

Neiman, P. J., R. M. Hardesty, M. A. Shapiro and R. E. Cupp, 1988:
Doppler lidar observations of a downslope windstorm. AMon.
Wea. Rev., 116, 2265-2275.

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 47, No. 24

\

Peltier, W. R., and T. L. Clark, 1979: The evolution and stability of
finite-amplitude mountain waves. Part II: Surface drag and severe
downslope windstorms. J. Atmos. Sci., 36, 1498-1529.

—— and , 1983: Nonlinear mountain waves in two and three
spatial dimensions. Quart. J. Roy. Meteor. Soc., 109, 527-548.

——,J. Halle and T. L. Clark, 1978: The evolution of finite amplitude
Kelvin-Helmholtz billows. Geophys. Astrophys. Fluid Dynamics,
10, 53-87.

Scinocca, J. F., and W. R. Peltier, 1989: Pulsating downslope wind-
storms, J. Atmos. Sci., 46, 2885-2914.

Simard, A., and W. R. Peltier, 1982: Ship waves in the lee of isolated
topography. J. Atmos. Sci., 39, 587-609.

Smith, R. B., 1985: On severe downslope winds. J. Atmos. Sci., 42,
2597-2603.

Sturrock, P. A., 1958: Kinematics of graving waves. Phys. Rev., 112,

1488.

Twiss, R. Q., 1951: On oscillations in electron streams. Proc. Phys.

Soc. London, 64, 654.




